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Abstract. We study the quantum dynamics of N coherently driven two-level atoms coupled to an optical
resonator. In the strong coupling regime the cavity field generated by atomic scattering interferes destruc-
tively with the pump on the atoms. This suppresses atomic excitation and even for strong driving fields
prevents atomic saturation, while the stationary intracavity field amplitude is almost independent of the
atom number. The magnitude of the interference effect depends on the detuning between laser and cavity
field and on the relative atomic positions and is strongest for a wavelength spaced lattice of atoms placed
at the antinodes of the cavity mode. In this case three dimensional intensity minima are created in the
vicinity of each atom. In this regime spontaneous emission is suppressed and the dominant loss channel is
cavity decay. Even for a cavity linewidth larger than the atomic natural width, one regains strong interfer-
ence through the cooperative action of a sufficiently large number of atoms. These results give a new key
to understand recent experiments on collective cavity cooling and may allow to implement fast tailored
atom-atom interactions as well as nonperturbative particle detection with very small energy transfer.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 42.50.Pq Cavity quantum electrodynamics; micro-
masers – 42.50.Fx Cooperative phenomena in quantum optical systems

1 Introduction

Cavity quantum electrodynamics CQED using optical res-
onators has experienced important experimental progress
in recent years. Several experimental groups achieved re-
markable milestones in the realization of well defined
strongly coupled atom-field systems [1–16]. This has lead
to numerous applications like single atom trapping by a
single photon [1–3], conditional quantum phase shifts of
very weak fields [7], deterministic sources of entangled
photons [8,9] and a single atom thresholdless laser [10].
Direct observations of the field mode structure [11,12,17]
and of the mechanical effects of the cavity field on the
atomic motion [2,3,18] have been reported culminating
in the recent demonstration of cavity induced cooling of
single trapped atoms [1].

Renewed interest was devoted to large ensembles of
atoms commonly coupled to a cavity field with several
modes, where collective atomic effects play a central role
in the coupled atom-field dynamics [13–16]. These exper-
iments have lead to unexpected results and opened new
theoretical questions. As a particular example, collective
phenomena in the presence of an external transverse driv-
ing field involving many atoms at different positions are
not fully understood [15,16].
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In this work we study theoretically the dynamics of
coherently driven atoms in a resonator. Our investigation
takes into account the atomic spontaneous emission, the
finite transmittivity of the cavity mirrors and the spatial
structure of the cavity mode. The system state is charac-
terized by the atomic fluorescence rate and the signal at
the cavity output and studied as a function of the system’s
parameter. To get further information on the system, we
calculate the probe absorption spectrum and the field dis-
tribution in the vicinity of the atoms.

From our results we show that in the strong cou-
pling regime the system dynamics exhibit enhanced cav-
ity emission accompanied by suppression of fluorescence
which occurs, for more than one atom, when the atoms
are spatially localized such that they emit in phase into
the cavity mode. This phenomenon shares several analo-
gies with the behaviour found in the case of a single atom
inside a lossless resonator [19,20]. In fact, this behaviour
can be traced back to destructive interference between the
laser and the cavity field generated by atomic scattering,
such that the atoms couple to a vanishing electric field.
As a consequence, we show that the stationary cavity field
is independent of the number of atoms and cavity decay
becomes the dominant channel of dissipation. In a good
cavity this allows to measure the light dissipated through
cavity decay without destroying the interference, which is
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Fig. 1. N atoms couple to a 1D optical resonator and are
driven transversally by a laser which illuminate them homoge-
neously. The inset shows the atomic transition which is relevant
to the dynamics.

vital if one wants to get information on the cavity field
and hence the current atomic positions. In addition, when
the strong coupling regime is achieved by a large num-
ber of ordered atoms the dynamics we find are consistent
with the experimental observations by Vuletic and cowork-
ers [15,16].

This article is organized as follows. In Section 2 the
model is introduced. In Section 3 we review the results
obtained for a lossless resonator [19] and investigate the
system’s dynamics when the decay rate of the cavity is fi-
nite. In Section 4 the field inside the cavity is investigated
by means of (i) an additional weak laser coupled to the
atom and (ii) an additional atom weakly coupling to the
cavity field. In Section 5 the scaling of the system dynam-
ics with the number of atoms is studied and the results
are discussed in connection with the experimental obser-
vations in [15,16]. In Section 6 the results are summarized
and discussed, and several outlooks are provided. The ap-
pendices report the details of the calculations presented
in Sections 3 and 4.

2 The model

We consider N identical and point-like atoms, whose
dipole transitions couple resonantly with the standing-
wave mode of an optical resonator. The atoms are assumed
to be located along the axis of the resonator, which we de-
note with the x-axis, and their center–of–mass motion is
neglected. The relevant atomic degrees of freedom are the
ground and excited electronic states |g〉, |e〉 of the dipole
transition, which is at frequency ω0. The transition cou-
ples to the resonator’s mode at frequency ωc and wave
vector k, and it is driven by a laser at frequency ωL and
Rabi frequency Ω, as shown in Figure 1. The laser is as-
sumed to be a classical field. The dynamics of the com-
posite system is described by the master equation for the
density matrix ρ of atoms and cavity mode

∂

∂t
ρ =

1
i�

[H, ρ] + Lρ+ Kρ (1)

where H is the Hamiltonian for the coherent dynam-
ics, and L, K are the superoperators describing dissipa-
tion due to spontaneous decay and cavity losses. In the
reference frame rotating at the laser frequency ωL the

Hamiltonian H has the form

H = −�δca
†a− �∆

N∑

n=1

|e〉n〈e|

+ �

N∑

n=1

[
g(xn)(aσ†

n + a†σn) +Ω
(
eiφnσ†

n + e−iφnσn

)]

(2)

where a, a† are the annihilation and creation operators of
a cavity photon; σn = |g〉n〈e|, σ†

n = |e〉n〈g|, are the dipole
operators for the atom at the position xn; δc = ωL − ωc,
∆ = ωL − ω0 are the detunings of the laser from the
frequency of the cavity and of the dipole, respectively.
The coupling constant between the dipole at position xn

and the cavity mode is g(xn) = g0 cos kxn, while the cou-
pling with the driving laser depends on the atomic position
through the phase φn = kxn cos θ, where θ is the angle be-
tween the cavity axis and the propagation direction of the
laser. Finally, the incoherent dynamics is described by the
superoperators

Lρ =
γ

2

∑

n

(
2σnρσ

†
n − σ†

nσnρ− ρσ†
nσn

)
(3)

Kρ =
κ

2
(
2aρa† − a†aρ− ρa†a

)
(4)

where γ is the rate of spontaneous emission of the dipole
into the modes that are external to the cavity and κ is the
cavity decay rate. Collective effects in the spontaneous de-
cay are neglected here, as the average distance between the
atoms is assumed to be of the order of several wavelengths.

3 Enhanced cavity emission in high-finesse
cavities

In [19] it has been shown that the steady state of a loss-
less cavity, coupled to a dipole and driven transversally, is
a pure state, such that the energy of the atom and cav-
ity mode is conserved. This regime is accessed when the
driving laser is resonant with the cavity mode. Then, the
atom is in the ground state and the cavity mode field,
generated by atomic scattering, is described by a coherent
state whose amplitude is determined by the intensity of
the laser. This can be easily seen in equation (1) for κ = 0
and N = 1, after moving to the reference frame described
by the unitary transformation

D(β) = exp
(
βa† − β∗a

)
, (5)

which corresponds to displacing the field inside the cavity
by the amplitude β = −Ωeiφ/ḡ (here, ḡ = g(x) �= 0 [21]).
In this reference frame and for δc = 0, equation (2) takes
the form of the Jaynes-Cummings Hamiltonian and the
steady state of the transformed master equation (1) is
evidently the state |g, 0〉. In the original reference frame
this corresponds to the steady state

ρss = |g, β〉〈g, β| (6)
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which is a pure state. In fact, the state |g, β〉 is eigen-
state of H and is stable for κ = 0. In particular, although
the atom is driven both by laser and cavity mode, it is
in the ground state as a result of the destructive inter-
ference between the atomic excitations induced by the
two fields. Therefore, there is no atomic fluorescence and
consequently the only dissipation channel of the system is
closed. State (6) exhibits thus the characteristic of a dark
state. Moreover, as the atom does not scatter cavity pho-
tons and the cavity is assumed to be lossless, the energy
of the cavity field is conserved.

In any realistic setup an optical resonator has a finite
decay rate κ. When the atom is driven and δc = 0, the
field decay induces dephasing at the atomic position and
the state (6) has a finite lifetime. However, it is reasonable
to expect equation (6) to approximate the steady state for
κ sufficiently small. In the following, we investigate the in-
tensity of the fluorescence signal and of the signal at the
cavity output in different parameter regimes, thereby ver-
ifying under which conditions energy dissipation through
spontaneous decay can be neglected and when the state
inside the cavity can be approximated by a coherent state.

In this section we restrict to the case of one atom and
take g(x) = ḡ �= 0. The density matrix at time t for κ �= 0
can be analytically determined by means of a perturbative
expansion in the small parameter κ, where cavity decay
is assumed to be slower than the rate at which the atom
reaches the steady state [22]. At this purpose, we rewrite
the master equation (1) in the form

∂

∂t
ρ =

1
i�

(
Heffρ− ρH†

eff

)
+ Jρ+ κK0ρ (7)

where

Heff = �ḡ
(
aσ† + a†σ

)
+ �Ω(σ† + σ)

−�

(
∆+ i

γ

2

)
|e〉〈e| − i�

κ

2
a†a (8)

and Jρ = γσρσ†, K0ρ = aρa† are the jump operators. The
formal solution of equation (7) is [23]

ρ(t) = S(t)ρ(0) +
∫ t

0

dτS(t − τ)(J + κK0)ρ(τ) (9)

with S(t)ρ(0) = exp(−iHefft/�)ρ(0) exp(iH†
efft/�). The

perturbative expansion of equation (9) at second order in
κ is reported in Appendix A. The photon scattering rate
at time t by the atom into the modes of the continuum is
Iat = γTr{σ†σρ(t)}, and to second order in κ it takes the
form

Iat = γκ2 Ω
2

4ḡ2

(
ḡ

|λ+|2 + ḡ2
+

ḡ

|λ−|2 + ḡ2

)2

+ o(κ3) (10)

where

λ± = −1
2

(
∆+ i

γ

2
∓

√(
∆+ i

γ

2

)2

+ 4ḡ2

)
(11)

and we have considered times t � 1/|Im{λ±}|. Hence,
the fluorescence signal grows quadratically with κ. At the

Fig. 2. Icav (dashed line) and Iat (solid line) as a function of
κ in units of γ. Here, Ω = γ, ∆ = δc = 0 and (a) g(x) = γ,
(b) g(x) = 10γ. The horizontal dashed-dotted line gives the
rate of fluorescence of the atom in free space.

cavity output the rate of photon scattering at time t Icav =
κTr{a†aρ(t)} is given by

Icav = κ
Ω2

ḡ2

+κ2Ω
2

ḡ2
Im

{
ḡ2

λ+ (|λ+|2 + ḡ2)
+

ḡ2

λ− (|λ−|2 + ḡ2)

}
+o(κ3).

(12)

Hence, in lowest order Icav is linear in κ and Icav � Iat. An
instructive case is found in the limit ∆ = 0 and ḡ � γ.
Here, the expressions (10) and (12) acquire the simpler
form

Iat ≈ κ
Ω2

ḡ2

1
2C1

(13)

Icav ≈ κ
Ω2

ḡ2

(
1 − 1

2C1

)
(14)

where C1 = 2ḡ2/γκ is the cooperativity parameter per
atom [24]. Thus, the two signals depend on κ through the
cooperativity parameter C1 and the factor κΩ2/ḡ2, which
is the decay rate of a cavity with mean photon number
〈n〉 = Ω2/ḡ2. From equations (13) and (14) it is visible
that for C1 � 1 the fluorescence signal is orders of mag-
nitude smaller than the intensity at the cavity output.

Figure 2 displays Iat and Icav as a function of κ and for
two different values of ḡ. The curves have been calculated
by solving numerically (7). Here, for a wide range of values
of the cavity decay rate Icav exhibits a linear behaviour as
a function of κ, while Iat is quadratic. Moreover, when ḡ
is increased (and thus when the cooperativity parameter
is increased) the relation Iat � Icav is fulfilled for a wider
range of values of κ, as it is visible by comparing Figure 2a
with Figure 2b. In particular, for ḡ = 10γ the signal Icav
largely exceeds the fluorescence signal Iat even for κ > γ.

The zero-time correlation function g(2)(0) of the sig-
nal at the cavity mirror gives further insight into the dy-
namics of the cavity field. Figure 3b displays g(2)(0) as a
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Fig. 3. (a) Mean number of cavity photon and (b) second-
order correlation function g(2)(0) as a function of κ in units
of γ. Here, ∆ = δc = 0, Ω = γ and g(x) = γ (dashed line),
g(x) = 10γ (solid line).

function of κ and Figure 3a displays the corresponding av-
erage number of cavity photons 〈a†a〉. From these figures
one sees that the cavity field exhibits a Poissonian be-
haviour for a fairly wide range of values of κ, correspond-
ing to large cooperativity parameters. This behaviour is
verified even when the average number of cavity photons
is very small (solid line in Figs. 3a and 3b). It shows that
the cavity mode is in a coherent state, independently of
the average energy of the cavity field. This behaviour con-
trasts dramatically with the antibunching observed when
the pump is set directly on the cavity [24,25].

4 Probing the system

In this section we investigate the response of the system
to a weak probe in the parameter regime for which the
steady state is given to good approximation by state (6).
We restrict to the case of one atom, whose dipole transi-
tion couples to the driving field and to the cavity mode,
and consider the spatial dependence of the coupling. The
resonator’s mode function is a standing wave with g(x) =
g0 cos kx and the atom is assumed to be at position x such
that g(x) = ḡ �= 0. The laser is a plane wave, and its phase
φn depends on the atomic position xn through the relation
φ(x) = kx cos θ, where θ is the angle between the direction
of propagation of the laser and the cavity axis. We assume
that laser and cavity are resonant, and analyze the sys-
tem’s response to two types of probe: (i) a weak laser field,
coupling to the atomic dipole, as shown in Figure 4; (ii) a
second atom of a different species, whose dipole transition
frequency is far–off resonance from the cavity frequency,
thereby negligibly perturbing the system.

4.1 Excitation spectrum

We consider a probe driving the atom as illustrated in
Figure 4a and evaluate the excitation spectrum, namely
the rate of photon scattering into the modes external to
the cavity, as a function of the detuning δP = ωP − ωL of
the probe frequency ωP from the pump. For δc = 0 and
κ = 0, the scattering rate of probe photons is evaluated
for a probe Rabi frequency Ω̃P such that Ω̃P � ḡ, Ω, γ.
The details of the calculation are reported in Appendix B.

γ

probeΩ

(a)
κ

(b)

d

Ω

Fig. 4. (a) Excitation spectrum: a weak probe is coupled to
the atomic dipole and its frequency is scanned through atomic
resonance. The fluorescence signal is measured as a function
of the probe detuning. (b) A second atom of another species,
weakly coupled to cavity and pump fields, probes the cavity
field inducing a position-dependent phase shift on the cavity
field. The phase shift can be measured by means of homodyne
detection or by measuring the fluorescence of the second atom.

Fig. 5. Excitation spectrum w(δP ) as a function of the probe
detuning δP in units of γ, for the parameters g(x) = γ, δc = 0,
κ = 0 and (a) ∆ = 0, (b) ∆ = −2γ.

The excitation spectrum is given by

w(δP ) = γ�Ω̃2
P

δ2P
[δP (δP +∆) − ḡ2]2 + δ2Pγ

2/4
(15)

and it is plotted in Figure 5 for two different values of the
detuning∆ between atom and laser. From equation (15) it
is evident that w(δP ) vanishes at δP = 0. This behaviour
gives rise to a Fano–like profile of the excitation spec-
trum as a function of δP [26], which is visible in Figure 5.
This profile is a manifestation of destructive interference
between the excitation paths contributing to the atomic
dynamics, which can be identified with the absorption of
photons from the laser and from the cavity field [27]. In-
terference is at the origin of the two resonances visible in
Figure 5 where the rate of photon scattering is maximum.
They correspond to values of the probe detuning δP = δ±,
with

δ± =
1
2

(
−∆±

√
∆2 + 4ḡ2

)
,

and have width γ±, which for
√
∆2 + ḡ2 � γ/2 take the

simple form

γ± ≈ γ

4

(
1 ± |∆|√

∆2 + 4ḡ2

)
. (16)

In the strong coupling regime these resonances correspond
to the dressed states of the atom-cavity system, and their
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Fig. 6. a.c.–Stark shift δatom of the probing atom as a function
of the distance from the atom pumping the cavity, which is at
an antinode of the standing wave. Here, g0 = Ω = γ, ∆ = δc =
0, and the laser propagation direction is perpendicular to the
cavity axis. The detuning of the probe atom from the cavity
frequency is ∆2 = 1000γ. Solid line: κ = 0; dashed line: κ = γ;
dash-dotted line: κ = 2γ.

widths determine the characteristic time–scales of the sys-
tem’s dynamics. Thus, for κ �= 0 enhanced cavity emission
accompanied by suppression of fluorescence are achieved
when min(γ+, γ−) > κ.

It is remarkable that w(δP ) does not depend on Ω and
thus does not depend on the average number of photons
inside the cavity. In particular, the position and width
of the resonances are the ones found for an atom in an
empty cavity. This result can be simply explained by ob-
serving that the field at the atomic dipole vanishes. In
other words, in the reference frame described by the uni-
tary transformation (5) the absorption of a probe photon
induces a transition |g, 0〉 → |e, 1〉, whereby |e, 1〉 is the
superposition of the eigenstates of the system at frequen-
cies δ± corresponding to the resonances of the excitation
spectrum. For κ �= 0 we have verified that also the split-
ting at the cavity output depends on g(x) and not on Ω.
This property suggests a use of this interference effect in
order to probe the atomic position inside the cavity with-
out significantly perturbing the system.

4.2 A second atom probing the cavity field

The electric field inside the cavity can be probed by means
of an atom which is weakly coupled, as shown in Figure 4b.
This can be, for instance, an atom of other species whose
dipole transition frequency is far–off resonance from the
cavity and the driving laser. This atom thus experiences a
small a.c.–Stark shift δatom, whose intensity is a function
of the distance d = x′−x from the atom which pumps the
cavity. It can be measured with an homodyne detection of
the cavity output field, where the pump field is the local
oscillator, or by measuring the fluorescence of the probe
atom. The shift δatom is plotted in Figure 6 as a function
of the distance d for different values κ. We observe that
cavity decay tends to cancel the spatial modulation of the
total electric field, which never vanishes inside the cavity
for κ �= 0. If the mechanical effects of light are considered,
then Figure 6 corresponds to the potential that the prob-
ing atom experiences. Hence, the latter may feel a binding

Fig. 7. Curves (a) mean number of photons and (b) excited
state population of atom at x1 (solid line) and at x2 (dashed
line) as a function of x2. Here, x1 is an antinode of the standing
wave g(x) = g0 cos kx. The parameters are κ = 0.2γ, Ω =
γ, g0 = 10γ, ∆ = 100γ, δc = 0, and the laser propagation
direction is perpendicular to the cavity axis.

or repulsive force in the vicinity of the first atom, depend-
ing on the sign of the detuning ∆2 of the laser from the
probing atom resonance.

5 Scaling with the number of atoms

5.1 Two atoms inside the resonator

So far we have considered that only one atom couples to
the cavity mode. If a second atom of the same kind is
inside the cavity and is illuminated by the laser, the dy-
namics is in general non-trivial. For κ = 0 suppression
of fluorescence is observed when the atoms are at a dis-
tance∆x which is an integer multiple of the wave length λ.
When this occurs, the two atoms are coupled with the
same coupling constant ḡ to the cavity mode, and from
equation (1) it can be verified that the state |g1, g2, β〉 is
the steady state of the system with β = −Ω/ḡ. Hence,
the total electric field vanishes at both atoms, while the
cavity field is the same as when only one atom couples to
the resonator. In general, one can define the function

β(x) = Ω(x) exp(i(π + kx cos θ))/ḡ, (17)

where ḡ = g(x) �= 0 and which includes inhomogeneity
of the pumping field. Then, the condition for suppression
of fluorescence with two atoms is fulfilled whenever two
positions exist such that β(x1) = β(x2), where the atoms
are located. Clearly, there may exist parameters regimes
for which function (17) is not periodic and a non-trivial
solution for suppression of fluorescence with more than
one atom does not exist.

Figures 7 and 8 display the average number of pho-
tons and the excited state populations as a function of
the relative distance between the atoms, assuming that
one atom is fixed at the antinode of the standing wave and
that both atoms are homogeneously driven by the laser,
which propagates perpendicularly to the cavity axis, i.e.
θ = π/2. Here it is visible that the excited state popula-
tion of both atoms vanishes at x2 = 0, λ. At these points
the field inside the cavity is different from zero, and it
is a local minimum as a function of x2, as it is particu-
larly evident in Figure 7. The population of the first atom
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Fig. 8. Same as Figure 7. Here, κ = 0.01γ, Ω = γ, g = 10γ,
∆ = δc = 0, and the laser propagation direction is perpendic-
ular to the cavity axis.

Fig. 9. (a) Ratio Γ = Icav/Iat for two atoms as a function of
their position x1 and x2 inside the cavity for the same param-
eters as in Figure 7. (b) Ratio as in (a) as a function of x2 for
x1 = 0. The dashed line shows Γ for the same parameters but
κ = γ. Note that x1, x2 are plotted modulus λ, and x1 �= x2.

vanishes as well when the second atom is at a node of the
standing wave. In this case, the dynamics of the cavity are
determined by the coupling with the atom at x1, whereas
the population of the second atom is determined by the
laser intensity, as if it were in free space.

Note that Figure 7 displays the situation when the
atoms are driven below saturation. Here both scatter co-
herently into the cavity mode and a second type of inter-
ference effect occurs for x2 = λ/2: at this point the cavity
field vanishes, while the atomic populations are equal and
different from zero. In fact, for x2 = λ/2 and below satu-
ration the atoms scatter coherently into the cavity mode
with opposite phase. At saturation, on the other hand, the
scattered light is mostly incoherent, and the cavity field
does not vanish at this point, as shown in Figure 8.

In Figure 9 the ratio between the cavity and fluores-
cence signal is displayed for the case illustrated in Figure 7
when the atoms are driven below saturation and the laser
is orthogonal to the cavity axis. Here one sees clearly that
this ratio is maximum when the atoms are a wavelength
apart, namely where the function (17) assumes the same
value at the atomic positions. For κ �= 0 absolute max-
ima are found when the atoms are at the antinodes of the
cavity mode, where the cooperativity parameter is largest
and the total electric field vanishes.

These considerations can be extended to three di-
mensions in a straightforward way. The three-dimensional
pattern is found taking into account the phase of the
pump, which we always assume to be orthogonal to the
cavity axis. The zeros of the electric field are then dis-
tributed according to a Body-Centered-Cubic lattice with
distance λ/2 between adiacent planes [16,28]. Fluores-

cence is suppressed when the atoms are localized at these
points, thus forming a stationary pattern.

5.2 N atoms inside the resonator

The dynamics of the coupled system for generic param-
eters and number of atoms are very complex. Neverthe-
less, insight can be gained in the limit in which the atoms
are driven below saturation. This assumption enables one
to adiabatically eliminate the atomic degrees of freedom
from the cavity equation, and corresponds to the parame-
ter regime |γ/2+ i∆| � √

Ng,
√
NΩ, when the collective

dipole is driven below saturation. Under these conditions
the density matrix of the field ρf obeys the equation

∂ρf

∂t
=

1
2
(γ′ + κ)

{
2aρfa

† − a†aρf − ρfa
†a

}

+ iδ′[a†a, ρf ] − i
[
(ξa† + ξ∗a), ρf

]
(18)

where γ′(N) = Nsγ is the cavity decay rate due to photon
scattering by spontaneous emission, δ′(N) = δc − Ns∆
contains the a.c.-Stark shift due to the medium, and ξ is
the cavity drive mediated by the dipoles,

ξ = Ns
(
∆− i

γ

2

) ∑
n g(xn)Ωeiφn

∑
n |g(xn)|2 . (19)

Here, s =
∑
sn/N where sn is defined for the atom n as

sn =
g(xn)2

(γ/2)2 +∆2
. (20)

From equation (18) it is visible that the system dissipates
with rate γ′ + κ, which determines the rate at which the
steady state is reached. The steady state of (18) is ρf,ss =
|α〉〈α|, where |α〉 is a coherent state with amplitude

α = − iξ
(γ′(N) + κ)/2 + iδ′(N)

= −Ω
∑

n g(xn)eiφn

∑
n |g(xn)|2

(γ/2 + i∆)
(Nsγ + κ)/2 − i(δc −Ns∆)

(21)

and which is the sum of the electric fields scattered at each
atom. In fact, in this regime the collective dipole is driven
well–below saturation and radiation is scattered elastically
into the cavity mode.

For a large number of atoms the contributions of each
atom sum up so that the field amplitude α exhibits a
narrow peak at the maximum value α0 as a function of
the mean square deviation of the phase ∆φn. This max-
imum corresponds to the case when all atoms scatter in
phase, namely when they are distributed at the points
{x1, . . . , xN} where the function (17) acquires the same
value. The necessary condition that this situation is ver-
ified is that β(x) is periodic, as we have previously ob-
served. In the following we assume that the laser prop-
agates perpendicularly to the cavity axis, i.e. θ = π/2.
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Hence, β(x) has periodicity equal to λ. Assuming that
the atoms scatter in phase into the cavity mode, the am-
plitude of the cavity field is given by

α0 = −Ω
ḡ

Ns(γ/2 + i∆)
Ns(γ/2 + i∆) + κ/2 − iδc

(22)

where ḡ = g(x1) = . . . = g(xN ) and ḡ �= 0, namely the
atoms are spatially distributed in a pattern which has spa-
tial periodicity λ. The pattern is here assumed to have
low filling factor, such that sub- and supperradiance ef-
fects in the scattering in free space are negligible. Note
that for large filling factors subradiance may give rise to
other meta-stable states of the collective dynamics.

5.2.1 Stability of the atomic patterns

The atomic pattern in a standing wave cavity is invari-
ant per translation by λ. In principle, there is an infi-
nite number of patterns for any value of x in the range
[0, λ), corresponding to different values of the coupling
constant g(x). When the mechanical effects of light are
taken into account, however, the equilibrium positions are
at the antinodes of the cavity-mode standing wave x = 0
or x = λ/2. At these points, in fact, the force on the atoms
vanishes. This is evident when we consider the force Fn

entering the semiclassical equation of the motion for the
atom at xn moving along the cavity axis [28–30]

Ḟn = �kU0|α|2 sin(2kxn) + 2�kIm{η∗effα} sin(kxn) (23)

where U0 = g2
0∆/(∆2 + γ2/4) is the light shift due to

the coupling to the cavity, Γ0 = g2
0γ/2(∆2 + γ2/4) the

rate of dissipation, and ηeff = Ωg0/(−i∆+ γ/2) the term
due to the transversal pump on the atoms. The parame-
ter α describes the field amplitude, which evolves accord-
ing to equation (18). We denote with even (odd) pat-
tern the atomic pattern where the atoms are localized
at the equilibrium points x

(0)
n such that cos kx(0)

n = 1
(cos kx(0)

n = −1). For κ = 0 and δc = 0, one has suppres-
sion of fluorescence when the cavity field coherent state
has amplitude α = β� = Ω/g0ei(�+1)π, with � = 0, 1 de-
pending on whether the pattern is even or odd. Hence,
the cavity fields due to each pattern differ by a phase π.
Numerical studies have reported selforganization of the
atoms in these patterns [28]. Stability is found for small
(but non-vanishing) negative values of δc, as we have veri-
fied numerically [31]. From equation (23) we can estimate
the force δfn around these points when the atoms under-
goes a small displacement δxn from the equilibrium posi-
tion x(0)

n . At first order in δxn the force takes the form

δfn ∼ 2�k2

(
Ω

g0

)2
δc
N
δxn (24)

and it is clearly a restoring force for δc < 0. This con-
dition is sufficient, since the field amplitude α does not
vary in first order in δxn, nor does the force for small fluc-
tuations in α. Remarkably, equation (24) is independent

Fig. 10. Mean number of cavity photons as a function of δc

in units of γ. The solid line corresponds to κ = 0, the dotted
line to κ = 0.01γ. For N = 1 atom, the parameters are Ω =
g = 0.1γ, and (a) ∆ = 0, (b) ∆ = γ.

of ∆. Moreover, its intensity depends on the mean num-
ber of cavity photons, and thus on the pump intensity.
This result has been confirmed by numerical simulations
and is in line with the experimentally observed depen-
dence of enhanced cavity emission on the intensity of the
pump, showing that the effect manifests itself when the
pump intensity exceeds a threshold value [15]. We remark
that result (24) is valid when the ratio δc/N is sufficiently
small, so that to good approximation the field inside the
cavity is given by β� = (−1)�+1Ω/g0 and the total field at
the atomic positions almost vanishes. The dependence of
the system dynamics on the atom number N is discussed
in the following subsection.

5.2.2 The cavity field when the atoms emit in phase

We now assume that the atoms are localized in an even
pattern, such that the cavity field amplitude is β� = β0 =
−Ω/g0, and disregard the mechanical effects of light. For
κ = 0 and δc = 0 we recover from equation (22) the result
α0 = β0. Thus, in this limit the stationary field is inde-
pendent of the number N of atoms and of the detuning ∆
between laser and dipole transition. The field amplitude
achieves the maximum value as a function of δc for δ′ = 0,
corresponding to the condition δc = Ns∆. This is visible
in Figure 10, where the average number of photons is plot-
ted as a function of δc and for two different values of ∆.
For ∆ �= 0 the detuning δc = Ns∆ is the a.c.-Stark shift
of the cavity mode frequency due to the coupling with the
atomic dipoles. For this value the classical field drives the
system resonantly, and the amount of energy transferred
into the cavity mode is maximum. Note that the position
of the resonance δc = Ns∆ scales linearly with N and for
|∆| � γ is inversely proportional to ∆. The correspond-
ing linewidth γ′+κ scales as N/∆2 for γ′ � κ. Obviously,
large values of κ broaden the resonances.

At the amplitude of the cavity field of equation (22)
the population of the excited state of an atom in any of
the pattern positions is given by

Πe =
Ω2

(γ/2)2 +∆2

κ2/4 + δ2c
(γ′ + κ)2/4 + δ′2

(25)

and is displayed in Figure 11 as a function of δc for some
parameter regimes. Clearly, for κ = 0 and δc = 0 the ex-
cited state population vanishes, indicating that the atoms
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Fig. 11. Excited state population as a function of δc in units
of γ, Same parameters as in Figure 10.

Fig. 12. Icav and total Iat as a function of N for Ω = g = κ =
10−3γ, and ∆ = δc = 0.

stop fluorescing. For ∆ �= 0 the population Πe exhibits
a maximum, which is located at δc ∼ Ns∆(1 + γ2/4∆2)
for |∆| � γ. For κ �= 0 the center-frequencies of the reso-
nances are shifted by an amount proportional to the cav-
ity decay rate, the curves are broadened, and the excited
states population does not vanish at δc = 0.

The behaviour of the system as the number of atomsN
is varied exhibits remarkable features. In fact, N appears
in the denominator of equations (22) and (25), scaling the
atomic effects in the cavity dynamics. In particular, a crit-
ical value N0 for the number of atoms can be identified,
such that for N � N0 the coupling with the atoms af-
fects relevantly the cavity dynamics, whereas for N � N0

atoms and cavity are weakly coupled.
For ∆ = δc = 0 one finds the value N0 = κ/sγ =

1/2C1 where C1 = 2g2
0/κγ is the one-atom cooperativity

parameter [24]. Thus for N � N0 the system is char-
acterized by a large cooperativity parameter. In particu-
lar, when N � N0 the excited states population in equa-
tion (25) acquires approximately the value as in free space,
while the cavity field amplitude scales linearly with the
number of atoms. There is thus no back–action of the cav-
ity on the atomic dynamics, since the cavity decay rate is
faster than the rate at which the atomic degrees of free-
dom reach their steady state. On the other hand, when
N � N0 the field amplitude tends to the asymptotic value
α → −Ω/g, while Πe

∣∣
0
∝ κ2/N2. Thus, the power dissi-

pated by spontaneous emission scales with 1/N , while the
signal at the cavity output is constant and independent on
the number of atoms. Figure 12 displays the signal at the
cavity output and the total fluorescence signal evaluated
from equations (22) and (25), respectively as a function
for N . For these parameters N0 ∼ 103.

An analogous behaviour can be found for large values
of ∆, and is illustrated in Figure 13. For |∆| � γ, κ the
critical number of atoms, determining the regime of strong

Fig. 13. Icav and total Iat as a function of N for Ω = g = κ =
10γ, ∆ = −1000γ and (a) δc = 0, (b) δc = −5γ.

coupling, is given by N0,∆ = |∆|κ/g2, and enhanced cav-
ity emission accompanied by suppression of fluorescence is
observed for N � N0,∆. This behaviour is also found for
values of the detuning δc �= 0, as shown in Figure 13b for
δc = −5γ, provided that N is sufficiently large to fulfill the
relation |δc| � Ns|∆|. Note that for values of N such that
δc = Ns∆, namely when a collective state of the system is
driven resonantly, the signals in Figure 13b exhibit a max-
imum. Nevertheless, as N increases, Icav tends asymptot-
ically to the value Icav → κ|Ω/g0|2 which is independent,
among others, of N and of ∆. It should be noted that in
this case increasing N corresponds to increasing the width
of the window around the value δc = 0 appearing in the
atomic population as a function of δc, as shown in Fig-
ure 11. Thus, the condition |δc| � Ns|∆| corresponds to
values of the detuning δc which are much smaller than the
a.c.-Stark shift, hence for which the condition of destruc-
tive interference is still (although approximately) fulfilled.

The parameter regimes discussed in Figure 13b are
consistent with the ones of the experiment by [16], that
reported a rate of emission into the cavity modes exceed-
ing by orders of magnitude the rate of fluorescence into
the modes external to the cavity. This observation was
accompanied by the measurement of a coherent cavity
field whose characteristic gave evidence of atomic self-
organization. This behaviour has been explained as Bragg
scattering of the pump light by the atomic grating. How-
ever, from the results presented in this section we can
argue that Bragg scattering is actually suppressed in this
regime, as the experimental regime of [16] can be classified
to be in the region with N � N0. In fact, in the strong
coupling regime a cavity field establishes when the atoms
organize spatially, that cancels out with the pump at the
atomic positions. As a consequence the atoms decouple
from the cavity and pump field, and are in the ground
state. Therefore, there is no fluorescence nor superradiant
scattering into the cavity mode. In this regime the main
source of dissipation is through cavity decay. We remark
that these dynamics is encountered also in the case of a
single atom. In fact for strong coupling the stationary cav-
ity field is solely determined by pump intensity and cavity
coupling at the atomic position, while the atoms are in
the ground state. In particular, the regime of large N in
Figures 12 and 13 corresponds to large cooperativity pa-
rameters, while in Figure 2 strong coupling is achieved
for small κ. Note that, differently from optical bistabil-
ity [32], where bistable dynamics are observed for large
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cooperativity, here there is only one steady state, where
the atoms are in the ground state.

In summary, the enhanced cavity emission of [16] can
be traced back to an interference effect between pump and
cavity field, which is established for large cooperativity
parameters. Although in this treatment we have neglected
the center-of-mass motion, this hypothesis is supported by
the stability of the pattern in this parameter regime.

Finally, it should be observed that one important con-
dition for these dynamics is that the atoms are localized
according to a stationary pattern. This condition consti-
tutes a substantial difference to the collective scattering
via acceleration observed in the dynamics of the collective
atomic recoil laser [13,33].

6 Discussion and outlook

Collective effects play an important role in the dynamics
of N coherently driven atoms within a cavity mode. For
a resonant laser and a sufficiently large cooperativity pa-
rameter the atomic scattering of photons into the cavity
field may exceed the scattering into the free-space modes
by several orders of magnitude despite weak coupling and
low excitation of each individual atom. In this regime the
cavity output exhibits Poissonian photon statistics inde-
pendent of the mean cavity photon number. In addition
the probe excitation spectra of the atoms reveal the cavity
vacuum-Rabi splitting even for strong pump fields, when
the mean number of cavity photons is large.

The phenomenon can be understood as interference be-
tween the transverse pump and the cavity field, which is
established when the coupling between atoms and cavity
mode is sufficiently stronger than other effects determin-
ing the system’s dynamics. Remarkably, the establishing
of this regime corresponds to the situation in which the
total electric field at the atomic position vanishes. For
two or more atoms inside the cavity these conditions are
accessed when the atoms are distributed according to a
spatial pattern with periodicity equal to the mode wave-
length. By means of a simple model we have shown that
stable patterns are achieved for suitable laser and cavity
parameters, when the locations of the pattern are at the
antinodes of the cavity standing wave. We have identified
two patterns, which correspond to fields inside the cavity
which are shifted by a phase π. The results predicted by
this model are in qualitative agreement with the dynamics
reported in [15,16,28], and provide a physical picture of
the phenomena observed. It should be noted that the cav-
ity used in [15,16] is multimode, whereas in this work we
consider a single mode cavity. Nevertheless the dynamics
reported in [16] can be reproduced with a model consist-
ing in a single mode cavity and two level atoms, showing
that the basic physical phenomena can be traced back to
the interference effect discussed here.

The phenomenon of interference in the driven Jaynes-
Cummings model has been denoted with “cavity induced
transparency” by Rice and Brecha [27], and it can be
traced back to the classical dynamics of two coupled

damped oscillators [35]. Rice and collaborators have the-
oretically investigated the dynamics of a classical dipole
coupling resonantly to a cavity mode when the cavity is
driven [25,34]. In this case the field due to atomic po-
larization cancels out with the drive on the cavity. Due
to this effect the cavity electric field vanishes. Thus, the
phenomenon is established when the dipole decay rate is
smaller than the cavity decay rate and, once this regime
is accessed, energy is dissipated mainly by spontaneous
decay. This situation might seem equivalent in many
respects to the case discussed by Carmichael and cowork-
ers in [19], where the role of cavity and atom are ex-
changed. Nevertheless, when the cavity is driven quan-
tum noise and saturation effects on the dipole give rise to
deviations from its classical behaviour and thus from in-
terference. Here interference is recovered for a sufficiently
large number of dipoles N , so that the collective dipole is
to good approximation an oscillator. Another interesting
difference between the driven-cavity and the driven-atom
case is the signal at the cavity output. When the cavity
is driven and γ � κ, the g(2)(τ) function is antibunched
at τ = 0 [25,34]. On the contrary, when the atoms are
driven and κ � γ, we have shown that g(2)(0) = 1 even
when the mean energy of the cavity field energy is very
small.

It is instructive to compare the phenomenon of sup-
pression of fluorescence investigated in this work with
the phenomenon of electromagnetically induced trans-
parency manifesting itself in driven multilevel atomic tran-
sitions [36]. The two types of interference arise because of
different dynamics: in EIT the atomic polarization is or-
thogonal to the field polarization, so that the atom does
not absorb photons. In “cavity-induced transparency” the
laser and the cavity field cancel out, so that the total elec-
tric field at the atom is zero. It is this very property that
leads to the vacuum Rabi splitting observed in the exci-
tation spectrum even when the mean energy of the cavity
field is significantly large.

There are several interesting questions which are worth
investigating starting from these results. For instance, do
other patterns exist, than the ones found, which may be
stable and bring to a different steady state of the cav-
ity field? In this context, we have considered a transverse
pump whose propagation direction is orthogonal to the
cavity axis. In this way, the periodicity of the pattern is
determined solely by the periodicity of the cavity stand-
ing wave. When the angle between cavity and pump is
different the situation may change drastically, even giving
no a priori possibility of finding a stable pattern for more
than one atom. For other cases, when the cavity mode is
not a standing wave, but, say, a ring cavity [13,14], again
other dynamics are expected. Such questions will be tack-
led by treating systematically the mechanical effects of
light-atom interaction, and will be subject of following
works [31].

For systems of one or few atoms in high-Q cavities
the interference phenomenon presents several potentiali-
ties for implementing coherent dynamics of quantum sys-
tems. For instance, the vacuum Rabi splitting observed
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by probing the system depends on the position of the
atom in the mode, and may allow to determine the spa-
tial mode structure [11], as well as to implement feed-
back schemes on the atomic motion [37,38]. Moreover,
several experimental setups can presently trap single or
few atoms and couple them in a controlled way to the
cavity field [4–6,11,17]. The dynamics discussed here can
be applied for instance to implementations of quantum in-
formation processing, since interference effects are rather
robust against noise and decoherence. In addition, the co-
herence properties of the transmitted signal, which are
preserved even for very small photon numbers, suggest an
alternative kind of photon-emitters to the one investigated
in [8–10].
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G. Rempe, and W.P. Schleich. This work has been supported
by the TMR-network QUEST, the IST-network QGATES and
the Austrian FWF project S1512.

Appendix A: Evaluation of the perturbative
corrections in κ

In this appendix we present the main steps to deter-
mine ρ(t) in (9) to second order in κ. In the displaced
frame defined by the unitary transformation (5) ρ̃(t) =
D(β)†ρ(t)D(β), and equation (9) takes the form

ρ̃(t) = S̃(t)ρ̃(0) +
∫ t

0

dτ S̃(t− τ)(κK̃0 + γJ)ρ̃(τ)

where ρ̃(0) = D(β)†ρssD(β) = |g, 0〉〈g, 0| and

K̃0X = aXa† − Ω

g
(aX +Xa†) +

(
Ω

g

)2

X

S̃(t)X = Ueff(t)XUeff(t)†

Ueff(t) = exp
(
− 1

i�
H̃efft

)
.

Here, K̃0, S̃(t) are the transformed superoperators defined
on a density matrix X and Ueff(t) is a non–unitary oper-
ator, with H̃eff = D(β)†HeffD(β). The operator H̃eff is
non–Hermitian. Its spectrum and eigenvectors are calcu-
lated by solving the secular equations for the right and
left eigenvectors of H̃eff , according to H̃eff |vλ〉 = �λ|vλ〉,
H̃†

eff |vλ〉 = �λ∗|vλ〉. The states {|vλ〉, |vλ〉} constitute a
biorthogonal basis, such that

∑
λ |vλ〉〈vλ| = 1. In this ba-

sis the operator Ueff(t) can be written as

Ueff(t) =
∑

λ

e−iλt|vλ〉〈vλ|. (A.1)

We expand now Ueff(t) in second order in the parame-
ter κ, Ueff(t) = U

(0)
eff (t) + κU

(1)
eff (t) + κ2U

(2)
eff (t), where the

superscript indicates the corresponding order in the per-
turbative expansion. In order to evaluate these terms we
define

H̃eff = H̃
(0)
eff + κV (A.2)

with

H̃
(0)
eff = �g(aσ† + a†σ) − �

(
∆+ i

γ

2

)
|e〉〈e| (A.3)

V = − i�
2

(
a†a+

Ω2

g2

)
+

i�
2
Ω

g
(a† + a) (A.4)

and solve the eigenvalue equation at second order in κ,
obtaining

λ = λ(0) + κλ(1) + κ2λ(2) + o(κ3)

|vλ〉 = N−1/2(|v(0)
λ 〉 + κ|v(1)

λ 〉 + κ2|v(2)
λ 〉 + o(κ3))

and analogously for the left eigenvectors, where N =
〈vλ|vλ〉. In particular, the solutions at zero order have the
form

λ
(0)
n,± = −1

2

(
∆+ i

γ

2
∓

√(
∆+ i

γ

2

)2

+ 4g2n

)
(A.5)

with the respective right eigenvectors

|v(0)
n±〉 = an,±|e, n− 1〉 + bn,±|g, n〉 (A.6)

and

an,± = λn,±N−1/2
n,±

bn,± = g
√
nN−1/2

n,±

while the left eigenvectors |v〉 have the form |vn,±〉 =
a∗n,±|e, n−1〉+b∗n,±|g, n〉, where Nn,± = 〈vn,±|vn,±〉. Using
this expansion, the terms of the perturbative expansion of
the operator Ueff(t) are immediately found, and the evalu-
ation of ρ̃(t) = ρ̃(0)(t)+κρ̃(1)(t)+κ2ρ̃(2)(t)+o(κ3), consists
in the evaluation of the integrals

ρ̃(0)(t) = S(0)(t)|g, 0〉〈g, 0|

ρ̃(1)(t) =
∫ t

0

dτS(0)(t− τ)K0S(0)(τ)|g, 0〉〈g, 0|

ρ̃(2)t) = S(2)(t)|g, 0〉〈g, 0| +
∫ t

0

dτ
[
S(0)(t− τ)JS(2)(τ)

+S(0)(t− τ)K0S(1)(τ)

+S(1)(t− τ)K0S(0)(τ)
]
|g, 0〉〈g, 0| (A.7)

where S(l)(t)X =
∑l

p=0 U
(l−p)
eff (t)XU (p)

eff (t)†. Note that
in (A.7) we have omitted to write the terms containing
JS(j)(τ)|g, 0〉〈g, 0| (with j = 0, 1), since they vanish.

Appendix B: Evaluation of the excitation
spectrum

We evaluate the excitation spectrum by calculating the
transition amplitude which describes the scattering of a
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probe photon into the modes of the electromagnetic field,
into which the dipole spontaneously emit. The modes of
the electromagnetic field are here treated quantum me-
chanically. The Hamiltonian determining the dynamics is

H ′ = H +Hprobe +Hemf (B.1)

where H is defined in equation (2), Hprobe = �δP b
†b+ V ,

with b, b† annihilation and creation operators of a probe
photon, δP detuning of the probe from the cavity fre-
quency, and

V = �ΩP

(
bσ†

n + b†σn

)
(B.2)

the interaction of the probe with the dipole, with ΩP vac-
uum Rabi frequency. The term Hemf describes the cou-
pling of the dipole to the other external modes of the
electromagnetic field , Hemf =

∑
k �δkb

†
kbk +W , where k

labels the mode at frequency δk (in the reference frame of
the drive) and wave vector k, with corresponding creation
and annihilation operators b†k, bk, and W describes the
interaction with the atomic dipole,

W =
∑

k

�gk

(
σ†bk + σb†k

)
. (B.3)

Here, gk is the vacuum Rabi frequency for the coupling of
the mode to the dipole.

We assume that at t = 0 the system is in the stationary
state of the driven dipole and cavity system, the probe
field is a coherent state of amplitude η such that |η|2 � 1
and the other modes of the electromagnetic field are in the
vacuum |0k〉. As we are interested in the probability that
a probe photon is scattered into the modes of the e.m.f.-
field, the initial state is given with probability |η|2 by

|ψi〉 = |g, β; 1P , 0k〉 (B.4)

and it is at energy Ei = �∆+ �δP , while the final state is

|ψf,k〉 = |g, β; 0P , 1k〉. (B.5)

The transition amplitude is the element of the scattering
matrix Si,fk

,

Sifk
= −2iπ lim

T→∞
δ(T )(Efk

− Ei)Tifk
(Ei) (B.6)

where δ(T )(E) is the diffraction function,

δ(T )(E) =
1
π

sin(ET/2�)
E

(B.7)

and Tfi(Ei) is the transition matrix element, which at
lowest non-vanishing order has the form

Tifk
(Ei) = 〈ψf,k|W 1

Ei −Heff
V |ψi〉. (B.8)

Here, H ′
eff is the effective Hamiltonian,

H ′
eff = Heff + �δP b

†b (B.9)

where Heff is given in (8). At lowest order in η, the tran-
sition matrix element (B.8) has the form

Tifk
(Ei) = �

2gkΩ̃P 〈e, β; 0P , 0k| 1
Ei −H ′

eff

|e, β; 0P , 0k〉
(B.10)

where Ω̃P = ηΩP . The solution of (B.10) can be eas-
ily found in the reference frame defined by (5): here,
H ′

eff = H̃
(0)
eff + �δP b

†b, where we have used (A.3). Finally,
we obtain

Tifk
(Ei) = �gkΩ̃P

δP
δP [δP +∆+ iγ/2]− g2

. (B.11)

By substituting this result in equation (B.6) we find the
transition amplitude. The rate (15) is found from (B.6)
after summing over all modes of the continuum and taking
the modulus squared divided by the time T [26].
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